

Institute of Project Management Department of "Logistics"

EDUCATIONAL PROGRAM 7M11302 - «Logistics»

Code and name of educational program

Code and classification of the field of education: 7M11 Services Code and classification of training directions: 7M113 Transport services Group of educational programs: M152 Logistics (by industries) Level based on NQF: 7 Level based on IQF: 7 Study period: 2 Amount of credits: 120

Almaty 2023

Educational program

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Protocol № 3 dated «_27___» _10_2022.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Protocol № 2 dated « 21 » 10_2022

was developed b	am <u>/M11302 - (</u> code and name of educa y Academic commi	tional program	direction «7M113	Trans
services »		Position	Workplace	Signat
Funname	Academic degree/			
Chairperson of Ac	ademic Committee:		Middle	
Mukhanova Gulmira Samudinovna	Candidate of Technical Sciences, Associate Professor	Head of the Department	"Kazakh National Research Technical University named after K.I.Satpayev", - mobile phone: +77019937718	Th
Teaching staff:			170500000	
Bekzhanova Saule Ertayevna	Doctor of Technical Sciences, Professor	Professor	"Kazakh National Research Technical University named after K.I.Satpayev", mobile phone: +77017994770	chey
Saltanat Bolatovna	Candidate of Economic Sciences	Assistant Professor	"Kazakh National Research Technical University named after K.I.Satpayev", mobile phone: +77057696077	fei
Tymbaeva Zhazira Muratbekovna	Candidate of Economic Sciences	Associate Professor	"Kazakh National Research Technical University named after K.I.Satpayev", mobile phone: +77017867603	A
Tyshkanbayeva Mansia Bukarina	Candidate of Physical and Mathematical Sciences, Associate Professor	Associate Professor	"Kazakh National Research Technical University named after K.I.Satpayev", mobile phone: +77472870472	Ø
Employers:			1	1211
Tulebaev Madiyar		Director	TOO «ZhebeLogistics»,	bee
Medetbekov Serik Muratbekovich		Associate Director	TOO «Typkectan- INVEST»	Il.
Students		2.1	IIIZ	1
Kozhataev Sauran		2nd year doctoral	Research Technical	

Table of contents

NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATBAYEV» University named student after K.I.Satpayev", mobile phone: +77788929235 "Kazakh National 4th year Mailybayeva Research Technical student Aina University named after K.I.Satpayev", Mobile phone: +77013821226 "Kazakh National Master's Narynbay Rauan Research Technical 2nd student Zhandauletuly University named vear after K.I.Satpayev", mobile phone: +77052010290 F KazNRTU 703-05 Educational program

List of abbreviations and designations

- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes

- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program
- 6. Additional educational programs (Minor)

List of abbreviations and designations

EP	Educational program
NQF	National Qualifications Framework
SQF	Sectoral Qualifications Framework

1. Description of educational program

EP 7M11302 - "Logistics" is developed in accordance with the requirements to the level of training of a master student, which are determined on the basis of the Dublin descriptors of the second level of higher education (Master's degree) and reflect the mastered competences expressed in the achieved learning outcomes.

2. Purpose and objectives of educational program

Purpose of EP: Training of scientific and pedagogical personnel who have skills in working with modern information technologies and automated systems and programs that allow to carry out research in the field of transport, supply chain, transport and logistics systems, functions and processes automation and modelling. **Tasks of EP: -**

-creating conditions for the formation and development of students' competences based on the application of modern learning technologies;

- providing the educational process with highly qualified domestic and foreign staff;
- -training of competitive specialists with deep theoretical knowledge and practical skills in the field of logistics;
- creation of conditions for co-operation with foreign partner universities in order to provide students with access to global knowledge bases;
- -formation and development of environment for the development of science in the field of logistics.

3. Requirements for evaluating the educational program learning outcomes

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of	7M11 Services
	the field of education	
2	Code and classification of	7M113 Transport services
	training directions	
3	Educational program	M152 Logistics (by industries)
	group	
4	Educational program	7M11302 Logistics
	name	
5	Short description of	EP 7M11302 - "Logistics" is developed in accordance with the

	educational program	requirements to the level of training of a master student, which are
	Program	determined on the basis of the Dublin descriptors of the second
		level of higher education (Master's degree) and reflect the
		mastered competences expressed in the achieved learning
		outcomes
6	Purpose of FP	Training of scientific and pedagogical personnel who have skills
0	I upose of Er	in working with modern information technologies and automated
		systems and programs that allow to carry out research in the field
		of transport supply chain transport and logistics systems
		functions and processes sutemation and modelling
7	Type of ED	Now ED
/	Type of EP	
0	The level based on NQL	7
9	Distinctive features of ED	/ Double dialogue ED
10	Distinctive reatures of EP	
11	List of competencies of	-ability to apply scientific methods of analysis, sequences of
	educational program	analysis to substantiate scientific theories, to conduct analytical
		reviews;
		- ability to identify promising, relevant areas of research of
		scientific and applied nature on the basis of experimental and
		research developments;
		-ability to analyse logistics operations and functions in order to
		identify sources of innovation;
		-has the skills to assess the attractiveness of alternative innovation
		projects and the ability to justify own decision;
		-ability to apply modern logistics concepts in supply chains of
		industrial enterprises;
		- ability to apply methods of risk assessment of the transport and
		logistics services market in order to increase the reliability of the
		object's functioning and the efficiency of the decisions taken
12	Learning outcomes of	1. Applies modern teaching methods and educational
	educational program	technologies of pedagogical activity, communication skills,
		foreign language in scientific-pedagogical and research activities.
		2. The ability to apply a philosophical worldview and approach to
		research, the principles and laws of philosophical thinking in the
		tield of scientific research.
		3. Identifies current issues in sustainable logistics, supply chain,
		inventory and costs management strategies, intelligent transport
		systems in order to develop ways to reduce environmental
		emissions and maintain a favourable ecological environment.
		4. Uses methods of mathematical and simulation modelling,
		strategic planning and analysis, forecasting of transport and
		material flows to make optimal decisions in studies of transport
		and logistics processes and the movement of material flow in the
		supply chain.
		5. Introduces innovative technologies in the management of
		transport and logistics processes, the interaction of modes of
		transport and the supply chain in order to ensure the safety of the
		supply chain and increase the efficiency of the use of material,
		technical, financial and information resources.
		6. Solves the problems of designing and planning of supply chain
		of production system, logistics processes, global logistics
		systems and intelligent transportation systems using information

		technology and automation systems.
		7. Independently conducts research on transport and logistics
		objects and processes, transport systems in order to reasonably
		makes scientific decisions.
		8. Develops separate stages of technological processes to ensure
		the safety of personnel, the transportation process, the operation
		of vehicles and the movement of material flow in the supply
		chain on the implementation of automation systems of the
		transportation process
		9 Applies automated systems, communications and automation
		systems in road transport in the study of transport processes
		transport services and logistics functions
		10 Formulates complex supply chain and inventory management
		problems and identifies solutions
		11 Designs and researches transport chiests and facilities
		11. Designs and researches transport objects and facilities,
		interingent transport systems and reverse logistics chains based on
		the use of modern transport technologies, automatic design
		programs and knowledge of the technical characteristics and
		features of transport, vehicles and equipment.
13	Education form	
		Full-time
14	Period of training	2
15	Amount of credits	120
16	Languages of instruction	Russian, Kazakh, English
17	Academic degree	
	awarded	Master of Science in Services by EP 7M11302 - Logistics
18	Developer(s) and authors	-

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N₂	Discipline name	Short description of discipline	ine Amount of Generated learning outcomes (codes)											
	-		credits	LO1	LO2	LO3	LO4	LO5	LO6	LO7	L08	LO9	LO10	L011
		(Cycle of ge	eneral e	education	on disc	iplines							
	Γ		R	equired	compo	onent	I	I		1	I	I	I	I
1	English language	The course is designed for	5	V										
	(professional)	undergraduates of technical												
		specialties to improve and												
		develop foreign language												
		communication skills in												
		professional and academic												
		fields. The course introduces												
		students to the general												
		principles of professional												
		and academic intercultural												
		oral and written												
		communication using												
		modern pedagogical												
	TT' / 1	technologies.	2											
2	History and	The subject of philosophy of	3		v									
	philosophy of	science, dynamics of												
	science	science, specifics of science,												
		science and pre-science,												
		antiquity and the formation												
		of theoretical science, the												
		development of science												
		features of classical science,												
		non classical and post non												
		classical science philosophy												
		of mathematics physics												

		engineering and technology,							
		specifics of engineering							
		sciences, ethics of science,							
		social and moral							
		responsibility of a scientist							
		and engineer.							
3	Higher School	Undergraduates will master	3	v					
	Pedagogy	the methodological and							
		theoretical foundations of							
		higher school pedagogy,							
		plan and organize the							
		processes of teaching and							
		upbringing, master the							
		communicative technologies							
		of subject-subject interaction							
		between a teacher and a							
		master in the educational							
		process of a university.							
4	Psychology of	The discipline studies the	3	v					
	management	modern role and content of							
		psychological aspects in							
		managerial activity. The							
		improvement of the							
		psychological literacy of the							
		student in the process of							
		implementing professional							
		activities is considered. Self-							
		improvement in the field of							
		psychology and studying the							
		composition and structure of							
		management activities, both							
		at the local level and abroad.							
		The psychological feature of							
		modern managers is							

		considered.												
	Cycle of basic disciplines													
	Component of choice													
5	5 Automated systems The purpose of the discipline 5 V													
	for solving logistics	is the acquisition of skills for												
	problems	solving logistics problems by												
		undergraduates using												
		automated systems												
		Specialized logistics												
		company management												
		software. Features of the												
		implementation of the												
		KANBAN system. MySAP												
		Buisness Suite e-business												
		platform. Integrated SAP												
		NetWeaver integration												
		platform. Logistics software												
		based on the SAP platform.												
		Automated SAP platform												
		technologies for Supply												
		Chain Management (SCM)												
		and Customer Ralationship												
		Management (CRM).												
6	Analysis and	Purpose: to form a complex	5				v			v				
	forecasting of traffic	of theoretical knowledge of												
	flows	the basics of system analysis												
		and forecasting of traffic												
		flows and systems. After												
		completing the course, the												
		Master student should												
		demonstrate the ability to												
		analyse and forecast traffic												
		flows. The Master student												
		should know quantitative												

		and qualitative methods of							
		forecasting traffic flows; be							
		able to: - determine the							
		indicators of transport							
		systems for analysis; - apply							
		the methods of analysis in							
		practice; - apply methods of							
		transport flows forecasting.							
		Contents: Main							
		characteristics of transport							
		systems. Characteristics of							
		freight flows. Existing							
		approaches to traffic flow							
		analysis. Models and							
		methods of analysis and							
		forecasting of traffic flows;							
		time series and forecasting							
		methods in research.							
7	Simulation	Learning objectives:	5		v				
	modeling of	acquiring knowledge of							
	logistics processes	simulation modeling							
	and systems	methods and acquiring skills:							
		development of a conceptual							
		model, building a simulation							
		model, generating options,							
		planning experiments,							
		comparing options,							
		assessment of options,							
		choice of options. Content of							
		the discipline: building a							
		conceptual model of							
		transport and logistics							
		systems and system							
		processes. Research in the							

		field of transport and							
		production logistics based on							
		simulation modeling							
		methods: - problem analysis;							
		- data collection; -							
		development of conceptual							
		and simulation models; -							
		planning, execution and							
		evaluation of the experiment;							
		- interpretation and							
		presentation of results.							
8	Foreign language	The purpose of the course:	2	v					
	(not English)	Proficiency in a foreign							
		language at a basic level of							
		communication and							
		preparation for the use of							
		foreign language sources in							
		the field of study. Course							
		content: Lexical and							
		linguistic material (text and							
		sentence) satisfy two basic							
		principles of language							
		teaching: communicative							
		and systemic. The basic level							
		involves the improvement of							
		the language and							
		communicative competence							
		of students within the							
		elementary level of							
		education, the formation of							
		an active and passive							
		vocabulary of the student							
		and the development of the							
		ability to listen and							

		adequately perceive the speech of the interlocutor.							
9	Intelligent transport systems	speech of the interlocutor. The aim of the discipline is to form a theoretical basis of knowledge of the principles of operation, architecture and design of intelligent transport systems. After completing the course a Master student should know the current state of the legal	5	v		V			
		and normative-technical regulation of information support of transport industry in the RK; get theoretical and practical knowledge in the field of intelligent transport systems; be able to apply promising methods of solving professional tasks based on knowledge of global trends in the development of intelligent transport systems. Content of the discipline: Basic concepts related to Intelligent Transport Systems (ITS)_ITS							
		classification. The main areas of application of ITS. ITS and logistics. Introduction to ITS Project Development Stages of the development of ITS projects.							

		-							
		Basic definitions. Principles							
		of developing technical							
		specifications for the							
		justification of the ITS							
		project. Development of the							
		architecture of performance							
		indicators for the ITS							
		project. ITS models.							
		Development of the ITS							
		project. The structure and							
		composition of the ITS							
		system project. Examples of							
		the use of ITS in logistics							
		systems. Promising ITS in							
		logistics and supply chains							
10	Research	The course is aimed at	5	v	v		v		
	methodology	studying the laws, principles,							
		concepts, terminology,							
		content, specific features of							
		the organization and							
		management of scientific							
		research using modern							
		methods of scientometry. In							
		the course of training,							
		undergraduates will be able							
		to choose methods of							
		planning and organizing							
		scientific research. They will							
		study and master the							
		mechanism of scientific							
		search, analysis, conducting							
		experiments, organizing							
		surveys, compiling							
		questionnaires, standards and							

	regulations for the registration of research results. Gain skills in the preparation and execution of documents for scientific projects, reports, publications for seminars and conferences.							
Scientific research methodology (Silesian University of Technology)	The purpose of the discipline is the study of important general principles, methods and guidelines for conducting scientific research and the publication of their results. Content: Selection and definition of the research topic. Literature search. Basic principles of the scientific method. Design experience. Apparatus design. Conducting experiments. Analysis of experimental data. Measurement errors. Probability, chance and logic. Mathematical development - general methods of setting problems. Dimensional analysis and application of dimensionless variables. Numerical calculations. Research reports and rules for writing scientific articles.	2		$\boldsymbol{\mathbf{v}}$		V		

		Competences: ability and												
		skills to plan and conduct the												
		necessary research and write												
		a master's thesis correctly.												
12	Modern problems of	The course provides for the	5				v		v	v		v		v
	transport science,	study of the history and												
	engineering and	methodology of transport												
	technology	science, basic research												
		methods of transport												
		systems, research methods in												
		the field of transport science,												
		engineering and technology.												
		Modern trends and trends in												
		the study of science and												
		technology are being												
		studied, and they will focus												
		on specific problems of												
		transport science. Methods												
		of solving optimization												
		problems of transport												
		systems management,												
		application of mathematical												
		statistics in optimization of												
		transport processes,												
		modeling of transportation												
		and operational processes in												
		transport are considered.												
		Methods of planning and												
		organization of scientific												
		research are given.												
			Cycl	e of pro	ofile dis	cipline	S							
	Γ	11	Un	iversit	y comp	onent	1	1		1		I	I	I
13	Actual problems of	Learning objectives: the	5					v	v		v			
	transport and	study of the current state of												

logistics systems	transport systems and						
and processes	processes, the analysis,						
	synthesis and design of						
	traffic flows. Content of the						
	discipline: The current state,						
	problems and trends of						
	development of transport and						
	logistics processes and						
	systems (TLSiP);						
	Organizational and						
	technological bases of						
	transport systems; Indicators						
	of quality and efficiency of						
	the transport process;						
	Problems of freight terminals						
	and storage facilities in the						
	transport system; The role of						
	innovative technologies in						
	the development of TLSiP.						
	The graduate should be able						
	to: - Justify the stages of the						
	implementation of the						
	logistics function in the						
	management of material						
	flows in the TLSiP; -						
	determine the purpose,						
	objectives, functions, design						
	of logistics systems and						
	processes, - possess						
	information about the						
	development of transport						
	logistics market and its						
	current problems; - Form						
	components of the						

		integration trajectory of the							
		MF at different and master							
		the methods for assessing the							
		effectiveness of TLSiP; -							
		identify current problems							
		and design technologies of							
		transport and logistics							
		systems and processes; -							
		describe the activities of the							
		object in terms of process							
		flow; - to collect information							
		about the activities of the							
		object for the design; -							
		implement system designs							
		based on logistics							
		technologies and standards.							
14	Logistic tasks	The aim of the discipline is	5		v				
	modeling	to form a theoretical basis of							
		master students' knowledge							
		of models and methods of							
		mathematical and simulation							
		modelling. After completing							
		the course a Master student							
		should know the stages of							
		modelling, mathematical							
		methods of solving problems							
		in logistics, the basics of							
		conceptual and simulation							
		modelling; be able to build							
		mathematical models of							
		logistics problems,							
		determine the methods of							
		their solutions and find							
		optimal solutions. Content of							

							-				
		the discipline: Mathematical									
		models and methods in									
		logistics processes.									
		Economic-mathematical									
		models and methods of									
		solving problems in the									
		management of production,									
		transport and logistics									
		processes, processes of									
		storage, distribution of									
		resources and product sales.									
		Theoretical foundations and									
		methods of solving applied									
		problems in logistics and									
		organization of transport									
		services. Stages of									
		simulation modelling.									
		Building a conceptual									
		model.									
15	Strategic inventory	The purpose of the discipline	5		v	v				v	
	management in the	is to study methods of									
	supply chain	optimal inventory									
		management using									
		information systems.The									
		content of the discipline: the									
		basic concepts of inventory									
		management and methods									
		for their analysis. Supply									
		chain inventory management									
		strategies. Inventory									
		formation mechanisms,									
		principles and methods of									
		inventory management in the									
		supply chain. Models of									

		optimal inventory levels.								
		Management of the								
		processes of inventory								
		formation. Methods to								
		reduce overall logistics costs								
		and total costs in inventory								
		management in the supply								
		chain.Information systems								
		and technologies for								
		inventory management in the								
		supply chain.								
16	Strategic logistics	The purpose of the discipline	5		v	v				
	cost management	is to study the content of								
		logistics costs and ways to								
		reduce them to increase the								
		company's competitiveness.								
		After completing the course,								
		the undergraduate must								
		know the content of logistics								
		costs and their classification;								
		be able to keep track of								
		logistics costs; have the								
		skills to make decisions to								
		reduce logistics costs.								
		Discipline content:								
		Information on the								
		qualitative and quantitative								
		content of logistics costs.								
		Types of classification of								
		logistics costs. Division of								
		logistics costs according to								
		the areas of activity of the								
		enterprise. Complete and								
		abbreviated cost accounting.								

г т т		г	- T	т			T	
	Cost accounting in space and							
	time. The reliability of the							
	information base. Planning,							
	accounting and opportunities							
	to reduce logistics costs.							
	Strategic management of							
	logistics costs as a means of							
	increasing the							
	competitiveness of an							
	enterprise. Accounting for							
	logistics costs by function: a)							
	management, b)							
	transportation, c)							
	maintenance and							
	maintenance of stocks at							
	procurement and storage,							
	production and sales and							
	distribution stages. Forecast							
	of sales volume using							
	mathematical and statistical							
	methods, taking into account							
	the inflation factor.							
	Construction of a regression-							
	correlation model of the							
	dependence of sales volume							
	and costs of management,							
	transportation, maintenance							
	and maintenance of stocks.							
	Determination of the total							
	reduced costs and the							
	minimum value of the total							
	costs.							
	Cycle	e of profile o	lisciplines	<u>. </u>	•	•	•	-
	Co	omponent of	choice	 				

17	Oute en mei n. e. f.	The size of the second is t	F						
1/	Outsourcing of	I ne aim of the course is to	3			v	V		v
	transport services	professional skills of moster							
		professional skills of master							
		students in managing							
		logistics business processes							
		when a company chooses a							
		logistics outsourcing strategy							
		as a promising direction of							
		development aimed at							
		increasing the							
		competitiveness of a							
		company operating in a							
		service economy. Course							
		content: The problem of							
		insourcing-outsourcing of							
		transport and logistics							
		services as a kind of the							
		problem MOU (make or							
		buy) - "Make or buy."							
		Characteristics of the main							
		reasons for decision-making							
		MOU. Economic and							
		strategic factors. Costs in							
		logistics in the context of							
		logistics functions,							
		classification of logistics							
		costs. Costs and price.							
		Strategic Factors in MOB							
		Decision Making.							
		Oualitative indicators of							
		logistics service.							
		Characteristics, dynamics							
		and structure of the world							
		market for logistics services							
		market for logistics services							

			1	1	1	1	1	1	1		1	
		and outsourcing.ing.										
18	Innovative	The aim of the discipline is	5				V	V				
	Technology in the	to develop the Master										
	Supply Chain	students' knowledge of										
		modern innovative										
		technologies in logistics and										
		supply chain management										
		for application in										
		professional activities. After										
		completing the course, the										
		graduate should know the										
		advanced innovative										
		technologies and information										
		systems in logistics and										
		supply chain management;										
		be able to apply technologies										
		in professional and scientific										
		activities. The content of the										
		discipline: modern										
		technologies based on the										
		intermodal approach, and										
		their use in logistics systems										
		and supply chains. Modern										
		intermodal transport										
		technologies. The principles										
		of increasing the reliability,										
		stability and dynamism of										
		supply chains based on										
		innovative technologies.										
		Modern mechanisms of										
		digital transformation of										
		logistics. The principles of										
		digital management of										
		supply chain processes and										

-				r			-			
		the main mechanisms for								
		their implementation.								<u> </u>
19	Integrated Supply	The goal of the discipline is	5		v	V	v		v	
	Chain Planning	to acquire skills in supply								
		chain planning using modern								
		information technologies. A								
		modern integrated supply								
		chain planning system.								
		Types of integrated supply								
		chain planning. Supply chain								
		planning and forecasting								
		methods. Development of								
		the idea of integration in								
		supply chain management								
		Internationalization and								
		globalization of the world								
		economy and their impact on								
		the competitiveness of								
		supply chains. Intercompany								
		integrated planning. Sales								
		and operations planning.								
		Internal integration and								
		coherence of organization								
		plans. The role of								
		information technology in								
		integrated supply chain								
		planning Tasks of working								
		with information in the								
		supply chain. Major IT								
		teams to support integrated								
		planning processes.								
20	IT systems in	Course objective:	7			v	v			v
	transport and	preparation for supply chain				Ì	,			
	logistics	management using modern								

(Silesian University	IT systems. Course content:						
of Technology)	The main tasks of cargo						
	identification systems. Use						
	of electronic information						
	dissemination systems.						
	Types of barcodes and their						
	application. RFID						
	identification systems.						
	Identification of loads in						
	integrated supply chains.						
	Systems for determining the						
	location of cargo based on						
	GPS. Cargo tracking and						
	monitoring systems - track &						
	trace. Use of database						
	management systems in						
	cargo management.						
	Advanced supply chain						
	management systems and						
	examples of their						
	application. Identification of						
	loads in the global e-						
	business supply chain. ERP						
	systems, SCM. Specialized						
	tools used for efficient						
	management of warehouse						
	processes are WMS systems.						
	Competencies: ability to						
	maintain the supply chain						
	along with the identification						
	of goods using databases.						
	Skills in using IT systems in						
	managing supply chains and						
	warehouse processes in a						

		manufacturing company								
21	Supply logistics in	The purpose of the course: to	5		v	v			v	
	transport 1	form the ability to formulate								
	(Silesian University	and solve the problems of								
	of Technology)	logistics flows in the field of								
		supply manufacturing plant,								
		warehouse, etc. Course								
		content: Importance of								
		supply and distribution in the								
		logistics system of a								
		transport company. The								
		main functions of								
		procurement processes.								
		Organization of purchases of								
		consumables. Supply of								
		procurement and information								
		technology. Supply market								
		analysis. Selection of								
		procurement sources, as well								
		as qualitative and								
		quantitative evaluation of								
		suppliers. The strategic role								
		of procurement in the								
		enterprise. Buying strategies.								
		Purchasing marketing.								
		Purchasing procedures.								
		Competences: skills and								
		abilities to select suppliers								
		by quantitative and								
		qualitative methods for a								
		particular product to be								
		supplied.								
22	Supply logistics in	The purpose of the course: to	4		v	v		v	v	
	transport $\overline{2}$	form the ability to formulate								

	(Silesian University	and solve problems for the								
	of Technology)	selection of piece,								
		prefabricated and transport								
		packaging in the supply								
		chain. Course content: The								
		importance of distribution in								
		the logistics system of a								
		transport company. The								
		essence and structure of								
		distribution channels.								
		Characteristics of the main								
		types of distribution								
		channels. The role of								
		intermediaries in distribution								
		channels: wholesalers,								
		agents, retailers. Internet as a								
		support tool for distribution								
		logistics. Types of packaging								
		and their role.								
		Competencies: ability and								
		skills to select distribution								
		channels and select								
		packaging for a specific								
		product.								
23	Logistics	Course objective: to develop	4		v	v		v	v	
	infrastructure	skills in solving problems								
	(Silesian University	related to the movement of								
	of Technology)	goods using point and line								
		infrastructure. Course								
		content: Infrastructure of								
		logistics processes. The main								
		parameters, division and								
		characteristics of the								
		transport infrastructure: road,								

		rail, inland waterways, sea							
		routes. Current state of							
		transport infrastructure in							
		Poland and plans for its							
		development. Infrastructure							
		of warehouse processes,							
		warehouse management.							
		Point infrastructure in							
		transport, transshipment							
		terminals, logistics centers.							
		Packaging systems							
		infrastructure. Infrastructure							
		of data processing systems.							
		Competencies: skills and							
		abilities to analyze the							
		logistics infrastructure for a							
		selected storage and							
		transport process.							
24	International	The aim of the discipline is	5			v			
	Business and	to study the basic principles							
	Logistics	of international business							
		organisation and logistics							
		formation. After completing							
		the course, the graduate							
		should know the advanced							
		innovative technologies and							
		information systems in							
		logistics and supply chain							
		management; be able to							
		apply technologies in							
		professional and scientific							
		activities. Content of the							
		discipline: Basic provisions,							
		concepts, principles and							

		functions international								
		logistics. Theoretical								
		foundations for the								
		formation of international								
		logistics systems and supply								
		chains. Information and								
		service support of								
		international logistics.								
		Relationships between								
		various components of the								
		international logistics								
		process. Analysis, planning								
		and control in the								
		management of global								
		supply chains.								
25	Research	The purpose of the discipline	5				v	v		v
	methodology for the	is the formation of								
	market of transport	undergraduate skills in								
	and logistics	conducting research on the								
	services	market of logistics services								
		based on knowledge of								
		methodological foundations.								
		After completing the course,								
		the undergraduate must								
		know the principles, stages								
		and methodology of the								
		study; be able to apply the								
		methodological foundations								
		of the study of the market of								
		transport and logistics								
		services in professional								
		activities. The content of the								
		discipline: the current state								
		of the world market of								

		transport and logistics							
		services. Problems and							
		existing solutions. Technique							
		and methods of research of							
		the market of transport							
		services. Improving the							
		market of transport and							
		logistics services in the							
		Republic of Kazakhstan.							
		Value Added Services.							
26	Methods of	The purpose of the discipline	5				v	v	
	inspection of	is the formation of							
	transport processes	undergraduate skills in							
		conducting research on							
		transport processes in							
		production and in the field of							
		cargo transportation. After							
		completing the course, the							
		undergraduate should know							
		the technology of transport							
		processes in production and							
		in the field of cargo and							
		passenger transportation;							
		have the skills to conduct a							
		survey of transport processes							
		in order to make decisions							
		on their improvement. The							
		content of the discipline.							
		Transport production.							
		Transportation processes and							
		systems. The technology of							
		the cargo transport process.							
		Transportation hubs.							
		Passenger transport systems.							

		The study of transport							
		The study of transport							
		systems. Design of transport							
		processes. Coordination of							
		work modes.					 		
27	Supply Chain	The purpose of the discipline	5		V	v			
	Modeling	is the formation of							
		undergraduate skills in							
		building conceptual and							
		simulation models of							
		logistics processes and							
		supply chains. After							
		completing the course, the							
		undergraduate should know							
		the stages of building							
		conceptual and simulation							
		models, simulation modeling							
		methods; possess the skills							
		of working in the							
		environment of the							
		AnyLogic simulation							
		package, building simulation							
		models, conducting							
		experiments, processing the							
		results of experiments,							
		making optimal decisions.							
		The content of the discipline:							
		basic concepts and principles							
		of modeling production and							
		logistics processes. The							
		basic concepts of simulation							
		and the construction of a							
		conceptual model. The							
		method of discrete event							
		(process) modeling.							

		Software for modeling in							
		production and logistics.							
		Building simulation models							
		in Anylogic simulation							
		environment. Conducting							
		experiments. Processing of							
		the results of the experiment.							
28	Operational and	The purpose of the course:	6		v		v		
	strategic	the formation of							
	management	undergraduate skills in							
	(Silesian University	strategic management and							
	of Technology)	analysis. Course content:							
		Business management							
		system. Control subsystems.							
		Institutional and functional							
		approach to management.							
		Economic, administrative							
		and sociological approach to							
		management. Levels (levels)							
		of management.							
		Management process and its							
		elements. The essence and							
		main features of the strategic							
		and operational management							
		of the enterprise. Strategy as							
		a result of the process of							
		strategic management - the							
		concept, main elements,							
		types of strategy. Stages of							
		the Strategic Management							
		Process (Strategic							
		Management Models):							
		Formulation and							
		Implementation strategy.							

29	Forwarding	Strategic control. Operational planning: concept, features, types of operational plans. operational control. Competencies: knowledge of methods of strategic analysis and strategic planning. Ability to evaluate the strengths and weaknesses of the company, formulate and evaluate alternative strategic options. The purpose of the course:	4		V		v		
29	Forwarding processes (Silesian University of Technology)	The purpose of the course: Formation of skills in organizing the transport and forwarding process using various modes of transport. Course content: Legal basis and general information about forwarding and forwarding activities. The concept of a transport gesture - typical examples. Terms of delivery of goods and settlements in foreign trade. The course and organization of the process of freight forwarding using various modes of transport (road, rail, sea, inland water, air). Organization of transportation of oversized cargo. Organization of	4		v		v		

	transportation of dangerous goods. Organization of transportation of perishable goods. Information technologies that ensure the activities of the forwarder. Customs clearance of goods. Transport insurance. Special types of freight forwarding - freight fairs and exhibitions. Competences: skills and abilities to organize cargo transportation by various modes of transport.							
30 Presentations and negotiation techniques in business (Silesian Univers of Technology)	d Course objective: Ability to prepare and conduct diploma and professional presentations, as well as negotiate. Course content: Types and methods of negotiations. Negotiator Skills. Techniques and rules of conduct during negotiations. Leader's Handbook. Preparation of premises and equipment. Social engineering of public speaking. Verbal and non- verbal communication. manipulation methods. Techniques for coping with stress during a presentation. Visual media: films,	2	V					

		the Power Point system.							
		Purposefulness and work							
		with difficult questions.							
		Preparation of posters and							
		presentations based on the							
		results of scientific work.							
		Preparation for dissertation							
		defense and public speaking.							
		Preparation for negotiations							
		and negotiation exercises.							
		Competencies: ability to							
		prepare multimedia							
		presentations on engineering							
		issues. The skills of							
		preparing the equipment of							
		the hall and conducting a							
		lecture using a set of							
		equipment. Skills for							
		evaluating presented							
		multimedia presentations.							
31	Supply Chain	The purpose of the discipline	5			v			
	Design for	is the formation of							
	Production Systems	undergraduate skills in							
		designing the supply chain							
		of an enterprise and							
		evaluating its effectiveness.							
		After completing the course,							
		the undergraduate should							
		know the stages and							
		principles of designing the							
		supply chain of an							
		enterprise, the performance							
		indicators of the supply							
		chain; possess the skills of							

		designing an effective chain							
		of a manufacturing							
		enterprise. The content of the							
		discipline: The basic							
		principles of supply chain							
		design. A systems approach							
		and systems analysis in							
		supply chain design.							
		Modeling of objects and							
		control subjects in							
		production systems. Criteria							
		for the quality and							
		effectiveness of the supply							
		chain. Methods and							
		algorithms for supply chain							
		design. Formation of the							
		organizational structure of							
		the supply chain. Evaluation							
		of the effectiveness and							
		efficiency of the supply							
		chain of the production							
		system.							
32	Reverse logistics	The purpose of the course:	2						v
	chains	the ability to design tasks							
	(Silesian University	associated with reverse							
	of Technology)	supply chains. Course							
		content: Basic concepts							
		related to waste. Waste types							
		and waste systems.							
		Environmental management							
		systems. Recycling oriented							
		design. Means of							
		transportation and storage of							
		waste. Industrial waste and							

				1				1		
		their transport. Industrial								
		methods of recycling								
		materials by their types and								
		origin. Directives on waste								
		and end-of-life vehicles.								
		Collection, storage and								
		transportation of used								
		technical means Methods for								
		dismantling and recycling								
		used vehicles and electrical								
		equipment. Competencies:								
		ability and skills to build a								
		reverse supply chain with a								
		choice of mode of transport.								
33	Thesis Seminar	Course Objectives: the	5						v	
	(Silesian University	student will get acquainted			V					
	of Technology)	with the principles of								
		planning, conducting and								
		developing research results,								
		and will also receive								
		preparation for the content,								
		formal and editorial								
		preparation of the content of								
		the dissertation work and its								
		visual presentation.								
		Contents: General								
		characteristics of the								
		dissertation, Types of								
		dissertations, Content								
		structure and division into								
		chapters depending on the								
		type of work. Selection of								
		literature. Development of								
		source materials, rules for								

_										
			the use of references to							
			literature, bibliography.							
			Determination of the topic,							
			purpose and scope of the							
			dissertation work and the							
			schedule for its							
			implementation. Rules for							
			writing a dissertation,							
			technical vocabulary,							
			division of content into the							
			main part and applications.							
			Choice of the method of							
			bench, model, measurement							
			and optimization tests:							
			development of a test							
			program. Multimedia							
			presentation of partial results							
			of the work. Rules for the							
			preparation and presentation							
			of a computer presentation.							
			Competences: the ability to							
			review the literature on the							
			topic of the dissertation;							
			research results processing							
			skills; preparation of a report							
			on the work, preparation of							
			its visual presentation and							
			presentation of the results.							
	34	Automation systems	The course examines the	5					v	v
		for road transport	theoretical principles and							
			categories of system							
			analysis, general theory of							
			systems, theories of							
			information, methods of							

						 		-		
		system analysis for								
		subsequent use in making								
		technical and managerial								
		decisions used in the								
		creation and operation of								
		information technologies,								
		automated control systems								
		for the schedule of								
		completed traffic, the								
		functional composition of								
		tasks and automated								
		workplaces of technical								
		personnel of a motor								
		transport company,								
		automated systems								
		management, business								
		processes of technological								
		center enterprises, business								
		processes of support in								
		corporate transport service								
		centers.								
35	The current state of	The purpose of the discipline	5		v	v				
	interaction of all	is the formation of								
	types of transport	undergraduate skills in								
		organizing the effective								
		interaction of various types								
		of transport based on the								
		knowledge of their technical								
		and operational								
		characteristics. After								
		completing the course, the								
		undergraduate should know								
		the methods and modern								
		technologies of								

-							
	transportation by various						
	modes of transport; possess						
	the skills of organizing the						
	transportation process with						
	the participation of various						
	modes of transport; be able						
	to carry out economic						
	calculations of the						
	assessment of the						
	transportation process.						
	Content of the discipline:						
	Functioning of main modes						
	of transport. Interaction of						
	modes of transport in the						
	transportation process, at the						
	points of cargo						
	transshipment, transfer of						
	passengers and in mixed						
	direct transportation. An						
	integrated approach to the						
	organization of						
	transportation on all modes						
	of transport. The choice of						
	the optimal transportation						
	option, methods of						
	interaction between modes						
	of transport. Technical,						
	technological, legal,						
	economic and information						
	spheres of interaction						
	between different modes of						
	transport. Modern						
	technologies of						
	transportation on various						

		modes of transport.							
		Economic models in the							
		calculation of the assessment							
		of optimal options for the							
		transportation of goods and							
		the infrastructure of							
		transshipment points.							
36	Modern transport	The purpose of the course:	2					v	v
	technologies	the ability to formulate and						•	•
	(Silesian University	solve transport problems in							
	of Technology)	the field of transport							
		technologies in the transport							
		services market. Course							
		content: The main							
		technologies of							
		transportation by road. The							
		main technologies of							
		transportation on railway							
		transport. Linear							
		infrastructure of railway							
		transport. Infrastructure of							
		the railway transport hub.							
		Selected technologies of							
		passenger and freight							
		transportation on railway							
		transport. Inland navigation							
		infrastructure. Basic							
		transport technologies in							
		inland navigation. Linear-							
		point infrastructure of inland							
		navigation. Technology of							
		loading operations in							
		transport. Selected							
		technologies of							

		-							
		transportation and loading							
		and unloading operations in							
		combined transport.							
		Competences: Knowledge of							
		methods of cargo selection,							
		selection of equipment for							
		cargo and transport							
		operations. Ability to							
		conduct a technical analysis							
		of the functioning of							
		transport rolling stock.							
		Transport planning skills.							
37	Enterprise Supply	The course content: the	5				v	v	
	Chain Management	concept of logistics system							
		and enterprise supply chain							
		management; the current							
		trends in the development of							
		supply chains; strategic							
		planning and methods of							
		designing enterprise supply							
		chains; controlling of key							
		processes in supply chains;							
		design of logistics systems							
		and supply chains; inventory							
		management in the supply							
		chain; Decision-making							
		processes in supply chain							
		management at strategic,							
		tactical and operational							
		levels. The main methods of							
		controlling material flows							
		and the stages of building a							
		supply chain management							
		system. Integrated							

		management and coordination concepts. Information Technology; information integration of processes in supply chain management.							
38 Su	ustainable logistics	The purpose of the discipline	5		v				
and	nd transport	is to study the direction of							
		research on the creation of a							
		and supply shain A ftor							
		and supply chain. After							
		undergraduate should know							
		the basic concepts and							
		principles of a sustainable							
		logistics system: be able to							
		identify problems in the							
		functioning of logistics							
		systems in the field of							
		"Green Logistics"; have the							
		skills to build sustainable							
		logistics systems and supply							
		chains. Discipline content:							
		Applied aspects of							
		sustainable logistics, supply							
		chain and transport. Analysis							
		of the impact of							
		environmental decisions on							
		logistics systems and							
		logistics closed supply							
		obains, reverse logistics							
		Sustainable Supply Chain							
		Sustainable Supply Cham Strateov							
		identify problems in the functioning of logistics systems in the field of "Green Logistics"; have the skills to build sustainable logistics systems and supply chains. Discipline content: Applied aspects of sustainable logistics, supply chain and transport. Analysis of the impact of environmental decisions on logistics systems and transport. Sustainable logistics, closed supply chains, reverse logistics. Sustainable Supply Chain Strategy.							

			Prac	tice-ori	iented 1	nodule				
39	Pedagogical practice	Goals of pedagogical practice: - organization of the pedagogical process based on the developed creative approaches and methods of pedagogical mastery, mastering the skills of performing pedagogical functions in the educational process; - mastering the skills and abilities of applying scientific research material and methodology of science in pedagogical activity; - formation of independence of undergraduates in rationalization, organization and planning of their pedagogical activity. Pedagogical practice involves mastering the following professional and pedagogical skills: - to orient oneself in the theoretical foundations of the science of the taught subject; - to independently design, implement, evaluate and adjust the educational process: - to use modern	6							

40 The purpose of the practice is to increase the level of training of masters by mastering in the learning process methods, techniques and skills of performing research, developing their creative abilities, independence, initiative in studies and future activities. Tasks of research practice: formation of undergraduates' understanding of the current state of transport services; conducting career guidance work among undergraduates, allowing them to choose the direction and topic of research; discussion of scientific articles, monographs, research results, regulatory documents on the profile of the master's program; teaching undergraduates the skills of academic work, including the preparation and conduct of research, writing scientific papers; developing undergraduates' skills of public speaking, scientific discussion and more profile	

	of research results.						

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K

CURRICULUM of Educational Program on enrollment for 2023-2024 academic year

Educational program 7M11302 - "Logistics" Group of Educational programs M152 - Logistics(by branches)

	Form of study: full-time	Duration	of study: 2	year		Academic de	gree: mas	ter of S	Science	e in Se	ervice
			Total		Classes	SIS		Alloca tra cours	tion of ining t ses and	face-to based of semes	o-face on ters
Discipline	Name of disciplines	Cycle	amount in	Total	amount	(including	Form of	I cou	urse	2 co	urse
code		Cycle	credits	hours	lec/lab/pr	TSIS) in hours	control	1 semester	2 semester	3 semester	4 semester
	CYC	CLE OF E	BASIC DIS	CIPLIN	ES (BD)						
	M-1. Modu	le of basi	c training (univers	ity compone	ent)		1			
LNG210	English language (professional)	BD UC	5	150	0/0/3	105	E	5			
HUM214	Psychology of management	BDUC	3	90	1/0/1	60	E		3		
HUM212 HUM213	History and philosophy of science	BDUC	3	90	1/0/1	60	E	3	5		
110111210	The series beddeby	con	nonent of	choice	1/0/1	00	L	5			
1.06200	Analysis and forecasting of traffic flows	con	iponent or	150	2/1/0	105	F		-		
TD 4169	Intelligent transport systems	BD CCH	5	150	2/0/1	105	E	5			
100220	Research methodology		(150	2/0/1	105	E		the second second		
100320	Research methodology	BD CCH	5	150	2/0/1	105	E	5			
TRA203	Modern problems of transport science, engineering and technology	bbeen	,	150	2/0/1	105	E	5			
TRA206	Automated systems for solving logistics problems	BD CCH	5	150	2/1/0	105	E		5		
LOG205	Simulation modeling of logistics processes and systems			150	2/1/0	105	E		5		
	CYCI	LE OF PR	OFILE DI	SCIPLI	NES (PD)						
	M-2. Module of professio	nal activi	ty (univers	ity com	ponent, com	ponent of c	hoice)				
LOG203	Actual problems of transport and logistics systems and processes	PD UC	5	150	2/0/1	105	E	5			
LOG204	Logistic tasks modeling	PD UC	5	150	2/1/0	105	E	5			
TRA243	Strategic logistics cost management	PDUC	5	150	2/0/1	105	E			5	
TRA224	Strategic inventory management in the supply	PDUC	5	150	2/0/1	105	E			5	
	onam	com	ponent of o	hoice							
LOG230	International Business and Logistics			150	2/0/1	105	E				
LOG231	Enterprise Supply Chain Management	PD CCH	5	150	2/0/1	105	Е			5	
TRA208	Supply Chain Design for Production Systems			150	2/0/1	105	E				
TRA222	Sustainable logistics and transport			150	2/0/1	105	E				-
TRA207	Automation systems for road transport	DD OOU	2	150	2/1/0	105	E		2		
LOG206	Research methodology for the market of transport and logistics services	PDCCH	5	150	2/0/1	105	E		2		
TRA446	The current state of interaction of all types of transport	PD CCH	5	150	2/0/1	105	E		5		
TRA230	Innovative Technology in the Supply Chain			150	2/1/0	105	Е				
TRA244	Outsourcing of transport services	DD COUL		150	2/0/1	105	E				
LOG232	Integrated Supply Chain Planning	PDCCH	2	150	2/0/1	105	E			2	
LOG208	Supply Chain Design for Production Systems	PD CCH	5	150	2/1/0	105	E			5	
LOG207	Supply Chain Modeling		120	150	2/1/0	105	E				
		M-3. Pra	ctice-orient	ted mod	ule						
AAP229	Pedagogical practice	BD UC	6						6		
AAP269	Research practice	PD, CCH	8								8
	M·	-4. Experi	mental res	earch m	odule	Della State of the second					

AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	2					2			
AAP241	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	3						3		
AAP254	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	5							5	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	14								14
		M-5. Modu	le of fin	al attesta	tion						-
ECA212	Preparation and defense of a master's thesis	FA	8								8
LOG215	Foreign language (not English) Scientific research methodology	BD CCH	2	60 60	0/0/2	0	R			2	-
	2	Suesian On	wersity (n recinio	nogy						
LOG222	Scientific research methodology	BD CCH	2	60	2/0/0	0	R			2	
LOG216	IT systems in transport and logistics	PD CCH	7	210	4/2/0	30	E			7	
LOG219	Supply logistics in transport 1	PD CCH	5	150	2/0/0	90	QP			5	
LOG217	Forwarding processes	PD CCH	4	120	2/0/0	60	QP			4	
LOG214	Operational and strategic management	PD CCH	6	180	4/0/2	0	E			6	
LOG221	Logistics infrastructure	PD CCH	4	120	2/0/0	60	QP			4	
LOG212	Presentations and negotiation techniques in business	PD CCH	2	60	2/0/0	0	QP				2
106213	Reverse logistics chains	PD CCH	2	60	2/0/0	0	OP				2
	Madarn transport technologies	PD CCH	2	60	1/0/1	0	QP				1
LOG218	iviouern transport technologies			120	2/0/0	30	E				6
LOG218 LOG220	Supply logistics in transport 2	PD CCH	4	120	3/0/0	50	E				
LOG218 LOG220 ECA210	Supply logistics in transport 2 Thesis Seminar	PD CCH PD CCH	4 5	120	2/0/0	90	R		_		4
LOG218 LOG220 ECA210 ECA211	Supply logistics in transport 2 Thesis Seminar Master's thesis	PD CCH PD CCH FA	4 5 15	120	2/0/0	90	R		_		1
LOG218 LOG220 ECA210 ECA211	Supply logistics in transport 2 Thesis Seminar Master's thesis Total based on UNIVERSITY:	PD CCH PD CCH FA	4 5 15	120	2/0/0	90	R	30	30	30	1

	Cycles of disciplines		C	redits	
Cycle code			university component (UC)	component of choice (CCH)	Total
BD	Cycle of basic disciplines		20	15	35
PD	Cycle of profile disciplines		28	25	53
	Total for theoretical training:	0	48	40	88
	RWMS				24
FA	Final attestation	8			8
	TOTAL:	8	48	40	120

Decision of the Scientific Council of KazNRTU named after K.Satbayev. Protocol № 3 27.10.2022 y.

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Protocol № 2 21.10.2022 y.

Decision of the Academic Council of the Project Management Institute named after E.A. Turkebayev. Protocol Nº 3 "17" october 2022 y.

Vice-Rector for Academic Affairs

Project Management Institute Director Head of "Logistics" Department

Representative of the Council from employers

Ament_

B.A. Zhautikov

B.B. Amralinova G.S. Mukhanova

S.M. Medetbekov